WHAT SENSE DO CHILDREN MAKE OF NEGATIVE DOLLARS?

Ian Whitacre

Florida State University
Jessica Bishop, Lisa Lamb, Randy Philipp,
Bonnie Schappelle, and Mindy Lewis
San Diego State University

About the Project

\square Mapping Developmental Trajectories of Students'
Conceptions of Integers
\square aka Project \mathbf{Z}
$\square 160$ interviews in spring of 2011
$\square 40$ children each in grades $2,4,7$, and 11
\square Many common tasks across grades
\square Focus today
\square Grade 7 data
\square One of many tasks

Contexts for Integers

\square Review of $5^{\text {th- }}$ and $6^{\text {th }}$ grade textbooks revealed that 94% used stories involving money in integer instruction (Whitacre et al., 2011)

Money Problem

\square Yesterday, you borrowed $\$ 8$ from a friend to buy a school t-shirt. Today, you borrow another $\$ 5$ from the same friend to buy lunch. What's the situation now?
\square Do you owe your friend money?

- Does your friend owe you money?
\square How much money?
\square How might students answer?

Money Problem

\square Write an equation or number sentence to describe this story problem (and answer).
\square What equations might students write?

Money Problem

\square Here are three equations that other students have written to describe this story. Do these make sense to you? Why or why not?

i.	$-8+-5=-13$
ii.	$-8-5=-13$
iii. $\quad 8+5=13$	

\square How might students respond?

Two Seventh-Graders' Responses

\square Evelyn wrote $8+5=13$.
\square Clip. Her reaction to $-8+-5=-13$

Carla wrote $-8+-5=-13$.
\square Clip. She also wrote and explained $8+5=13$.

Evelyn's Thinking

Carla's Thinking

Regular Numbers

\square What are regular numbers?
\square Regular numbers are neither positive nor negative.
\square Integers convey
\square Direction,
\square Magnitude.
\square Regular numbers convey
\square Magnitude.

Methods

\square Grade 7 data
\square Open coding of responses led to a distinction of interest:
\square Perspective (3 codes)
\square Codes were refined and used to code the whole data set.
\square We assessed inter-rater reliability on 25% of the data.
\square Coders agreed on 90% of coding decisions.
\square Today
\square We offer examples of each perspective.
\square We also report frequencies of each.

Perspective?

\square First distinction
\square Using regular numbers, as opposed to integers
\square Perspectiveless
\square Second distinction

- How are integers related to the money context?
\square Conventional and Unconventional Perspectives

Conventional \& Unconventional Perspectives

\square Integers convey directional information:
\square Who owes money to whom?
\square Conventional
\square Negatives denote money owed
\square Positives describe the lender's situation
\square Unconventional
\square Negatives denote money lost (loaned).
\square Positives denote money gained (borrowed).

Perspectiveless

Conventional Perspective

Unconventional Perspective

Results

\square How many $7^{\text {th }}$ graders correctly solved the money problem?

- 100\%
\square How many wrote an equation involving negatives?
- 20\%

Two of these also wrote $8+5=13$.
$\square 77.5 \%$ did not use negatives.
\square One other
\square How did they interpret equations involving negatives?

Results

Asked to interpret equations involving negatives
47.5\% conventional 47.5\% unconventional
(Two students could not make sense of negatives in relation to the story)

Summary of Results

$\square 100 \%$ of $7^{\text {th }}$ graders correctly solved the problem!
\square Only 20\% invoked negative numbers.
\square When explaining/interpreting equations involving negatives in relation to the money problem,
\square Half used a conventional perspective;
\square Half used an unconventional perspective.

Conclusions

\square All students solved the problem correctly.
\square Many did not think about it in terms of integers.
\square Regular numbers are part of students' worlds.
\square Almost all students were able to interpret equations involving negatives in relation to the money problem.
\square Half of $7^{\text {th }}$ graders interpreted these unconventionally.
\square (Unconventional perspective was less common among $11^{\text {th- }}$ grade pre-calc students).

Implications

\square Sensitivity to the distinction between regular numbers and positive numbers
\square Learning to inhabit various mathematical worlds
\square The relationship between integers and contexts is not trivial.
\square Negatives can be used to represent owing.
\square But how?
\square To what end?

Discussion

\square We want to know what you think about these ideas and these results.

