Project Team

Lisa Lamb

Lisa.Lamb@sdsu.edu
Randolph Philipp Jessica Pierson
rphilipp@mail.sdsu.edu jpierson@mail.sdsu.edu
Bonnie Schappelle, Candace Cabral, \& lan Whitacre
When, as a young boy, mathematician Jerry King (1992) told his teacher that he did not understand why -2 multiplied by -3 gives +6 , she answered sternly, "You have a very bad attitude toward mathematics. I've already told you that the product of two negative numbers is always positive" (p. 277). *

Research Questions

1. What are students' conceptions of integers and operations on integers?
2. What are possible developmental trajectories of students' understandings?

Why Study Integers?

- Integers mark a transition from arithmetic to algebra because of their abstract nature and because students must perform algebraic procedures using additive inverses, which first come into play with the introduction of integers.
- Difficulties in algebra have been linked to a lack of integer understanding (see e.g. Moses, 1989).
- Students have great difficulty operating on integers and those difficulties appear to be robust (see e.g., Gallardo, 1995, 2002; Vlassis, 2002); even those who have completed algebra courses are challenged by problems with negative numbers (Reck \& Mora, 2004; Vlassis, 2002).
- When compared with the literature on rational numbers or place value, literature on students understanding of integers is relatively sparse.

Interviews With Four Groups

Grade Level	Number of Participants	Rationale
K-4	40	To track informal conceptions
$5-7$	60	To track typical conceptions in years integers are usually taught
$8-12$	30	To track conceptions after formal teaching of integers
Specialized Adults	To track expert conceptions from one of 4 perspectives $>$ historical mathematical $>$ formal mathematical children's thinking $>$ teacher	

Outcomes/Deliverables

- A framework to identify problem types and increasingly sophisticated problem-solving strategies, as related to student thinking about integer operations.
- A valid and reliable paper-pencil integers assessment and set of scoring rubrics that measure a variety of students' understandings of integers.

Project \mathbb{Z}
MApping Developmental Trajectories of Students' Conceptions of Integers

Why Are Integers Difficult to Understand?

One might consider
a) the lack of a concrete entity from which to abstract the idea of negative number (consider the difficulty historically and the reluctance of the Western mathematics community to accept negative numbers as entities);
b) the ways that integers are symbolically represented (that is, that the negative sign [-] has two meanings: one as an operation (subtraction) and the other as a negative number); and
c) the unintuitive models currently available for supporting operations on integers.

```
What Might These Responses Tell Us
About a Child's Understanding of Negative Numbers?
```

1)

A child wrote the following to solve the problem 47-29: $\begin{array}{r} 47 \\ -29 \\ \hline 20 \\ -2 \\ \hline 18 \end{array}$	A child wrote the following to solve the problem 47-29:
How might this child have reasoned about the -2 ? I can't take 9 from 7 , but I can take 7 of the 9 from 7 , leaving 2 more to take from the 20 , so 20 minus 2 is 18 .	How might this child have reasoned about the -2 ? 20 plus -2 is 18 .

2) Children's responses to $-5+8$
a) Counting on. "Using the number line, I counted-on 8 spaces starting at -5 and landed on 3 ."
b) Decomposition and 0 as a benchmark. (Breaking down 8 to $5+3$), "I know that $-5+5$ is 0 and 3 are leftover, so the answer is 3 ."

How Can You Help Us?

- Share your integers tasks for use across grades K-12 and adults.
- Join our conversation about integers.

