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ABSTRACT: Utilizing a novel, hybrid molecular dynamics, Monte Carlo
simulation, we report on microstructural changes in a polymer network that
arise in response to oscillatory shear deformation. We model telechelic self-
associating polymers as a course-grained, bead−spring system. The stress response
of the system is obtained from rheological experiments and is reported as a
function of frequency and amplitude in both the linear and nonlinear regimes. The
frequency-dependent material properties are then correlated with observed
changes in the topological network structure. While only minimal structural
variations are observed in the elastic regime, a substantial rearrangement occurs in
the low frequency, large amplitude viscous regime. Aggregates tend to break apart,
resulting in an increased density of free chains. Additionally, the network tends to
break and form larger structural elements with an increase multiplicity of chains bridging between the same two aggregates.

■ INTRODUCTION

Associating polymers have the unique ability to span a large
spectrum of rheological properties, from fluid-like viscosity to
near solid-like elastic dynamics. Telechelic polymers are one
class of associating polymers. These triblock polymers consist
of two differing chemical groups. The backbone has a high
molecular weight and is constructed from multiple, repeating
units. The two functionalized ends of the molecule, referred to
as end groups, are members of a different chemical group and
comprise a small fraction of the total molecular weight. In
solution, end groups tend to aggregate by gathering into
localized domains. At low enough temperatures and at
concentrations above the micelle transition, a space spanning
network is formed. The nodes of this network consist of
aggregates of end groups, while links between aggregates are
formed by one or more bridging polymer chains. End groups
associate and dissociate from aggregates frequently; therefore,
the topological structure within the network exhibits transient
behavior.
The general fluid thickening characteristics of telechelic

polymers have long since had utility as a rheological modifier in
industrial applications within coatings1 such as paints,
adhesives, plastics, and sealants. Over the past few decades,
they have come into considerable interest in a multitude of
fields. Most recently, composite materials, partially composed
of telechelic polymers, have found their respective place in
medical and biological applications. Examples include a
temporary matrix for bone tissue regeneration2 and an
injectable drug delivery method3,4 along with regenerative
tissue engineering for wound dressing.5 Within these
applications a water-soluble polymer is desirable, constructed

as a hydrophilic backbone terminated by hydrophobic
groups.6−9 Because of the fact that these materials are primarily
water by weight, they can exhibit biocompatible and
biodegradable properties. They can also be subject to external
parameters such as temperature and pH.10,11 The behavior of
these materials is highly sensitive to their chemical composition,
allowing experimentalists to readily tune material properties,
broadening the number of potential applications.
Understanding and quantifying the characteristics that lead

to observed rheological properties is crucial to optimally design
materials. These properties have origins in the structural
content of the polymer network and in the dynamics of the
formation and breakup of aggregates. The following article
contains a computational study, wherein the transient structure
within the polymer network is investigated throughout the
viscoelastic regime. A novel molecular dynamics simulation of
telechelic polymers is utilized.12 We perform rheology experi-
ments by imposing oscillatory strain and focus on identifying
microstructural deviations in topology as a stress response.

■ METHODS
We designed and utilize a hybrid molecular dynamic (MD),
Monte Carlo (MC) simulation of telechelic polymers. The
computational simulation is based on the framework
established by Kremer and Grest.13 Polymer chains are
modeled in course-grained fashion as a string of beads
connected by springs. Each bead corresponds to multiple
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monomer units within an atomistic representation. The
imposed forces between beads are modeled through potential
energy interactions. Our simulation utilizes two different
pairwise potentials. The first is a shifted and truncated
Lennard-Jones (LJ) potential which provides excluded volume
interactions between beads
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The variable rij = |ri ⃗− rj|⃗ is the Euclidean distance between two
beads i and j. All beads in the model interact with each other
through this potential. A cutoff distance of rc = 21/6σ is used to
speed up the interaction calculations within the simulation.14

All units within reported results are in terms of reduced LJ
parameters: length σ, energy ϵ, and time (mσ2/ϵ)1/2, with the
bead mass m = 1. The parameter σ is a measure for the
diameter of a bead. Temperature is measured in units of ϵ/kb.
Each polymer is constructed as a chain of eight beads in

length. The chain structure is maintained numerically
throughout the simulation, such that nearest-neighbor beads
along the chain are permanently bonded through an
anharmonic, finitely extensible, nonlinear, elastic (FENE)
potential
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for rij < R0. The FENE potential diverges logarithmically as rij
→ R0. This provides a finite distance between chain beads. An
appropriate choice of parameter values R0 = 1.5 and κ = 30.0
prevents the possibility of chains passing through one
another.15

The experimental system is composed of 1000 polymer
chains and is contained within a simulation cell of dimensions
23.70 × 20.52 × 27.84. Periodic boundary conditions are
employed in the horizontal directions, while solid surfaces
confine the simulation in the vertical direction. Each of the two
solid surfaces is constructed as a collection of 400 beads with a
diameter of 0.8, distributed spatially over a two layer face-
centered cubic lattice. A repulsive LJ interaction is applied
between polymer beads and surface beads. Five percent of the
total simulated polymer chains are permanently grafted to the
surfaces by one end group to prevent wall slip during
rheological experiments. Twenty-five beads are attached to
the upper surface and 25 to the lower surface, all at an even
spacing. The grafting is accomplished numerically by assigning
a permanent FENE interaction between the grafted end group
and a specified bead within the surface. Because of the smaller
radius of the surface beads, R0 = 1.35 and κ = 37.0 for
interactions between surface and fluid beads.
Molecular dynamics governs the time-dependent positions of

beads within the simulation. The positions are updated in three
dimensions by integrating the equations of motion using a fifth-
order Gear predictor−corrector algorithm16 with a time step of
0.005. The temperature is controlled by coupling the simulation
cell to a heat bath according to the fluctuation dissipation
theorem as described by Kremer et al.13

The beads at each of the chain ends represent functionalized
groups. To model the associative properties of these groups, we

use a discrete MC step to form reversible, physical bonds. Each
end group can have bonds with multiple other end groups.
These bonds are modeled by a FENE potential with the same
parameters as that of the intrachain bonds, to which a negative
constant UASSOC is added. The association energy UASSOC can
be considered a bond formation affinity. The parameter’s
magnitude affects the overall dynamics within the simulation,
defining the temperature at which aggregation and ultimately
dynamical arrest occurs. We choose UASSOC = −22, setting a
convenient temperature range, spanning fluid-like dynamics at
the highest temperatures the simulation can reach and dynamic
arrest at the lowest temperatures.12 The formation and breaking
of these reversible bonds take place according to a Metropolis
algorithm.17 The MC step is as follows. Every 20 MD steps an
attempt is made to change the bonded state between each end
group. The state is switched if the difference between the
current and the proposed configuration results in a decrease in
energy ΔU < 0. In the case where ΔU > 0, the bonded state is
switched with a probability according to a Boltzmann factor
e−ΔU/kbT. This algorithm will tend to switch bonding
configurations more often at high temperatures than at low
ones. Shearing the system tends to break bonds. As shear forces
are imposed, the bonds between end groups become stretched.
Since stretched bonds have a higher energy, the algorithm will
favor breaking them, resulting in a decrease in energy. More
frequent bond configuration updates did not statistically change
the results of simulations discussed in this article. Our
technique differs from that employed by others,18 who gave
the end groups a greater affinity to each other than to all other
groups. The method at hand has the advantage that it can
explicitly track which end groups are connected to each other.
In an earlier article,12 characteristic temperatures were

identified wherein the MD simulation undergoes structural
changes. These lead to a fluid to gel-like transition in dynamics
when the temperature was lowered. The relaxation time was
determined according to Stokes−Einstein theory and provided
insight into these characteristic temperatures and structural
transitions. The relaxation time was shown to obey Arrhenius
behavior in the high temperature range, indicating fluid-like
dynamics. The system contained free chains which were
infrequently bonded to other end groups. At the lower
temperatures, Vogel−Fulcher theory predicted an extrapolated
divergence of the relaxation time at T = 0.29. This temperature
marked dynamic arrest, wherein the diffusivity of polymer
chains goes to zero and the viscosity becomes infinite. The
crossover between Arrhenius to diverging toward dynamic
arrest occurred at T = 0.75. Structurally, this was the onset of a
dramatic increase in the number of bonds Φ within the system.
The micelle transition, occurring at T = 0.51, was identified
where δ2Φ/δT2 = 0. This structural transition was accompanied
by a peak in the specific heat. Geometrical percolation was
found to occur at T = 1.5, even though the system acts as a fluid
and not a gel at this high temperature. This provided evidence
that gelation does not necessarily coincide with percolation. In
fact, percolation tends to precede gelation due to the transient
nature of the bonds within the polymeric network. Gelation at
lower temperatures is a result of bonds having a longer lifetime.
Therefore, structural components are maintained for longer
durations.

■ RHEOLOGICAL PROPERTIES
Rheological experiments were performed by imposing a
sinusoidal strain γ(τ) = γ0 sin(ωτ) (Figure 1a) to the upper
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surface of the simulation cell while holding the lower surface at
a constant position. A two parameter space was explored,
varying amplitude γ0 and frequency ω of the applied oscillatory
strain independently. All numerical experiments were started
from an identical, well-equilibrated, initial configuration at a
temperature of T = 0.4. The force F on the top surface of the
simulation cell, necessary to maintain the sinusoidal motion,
was traced over time. The stress response σ(τ) (Figure 1b) was
then calculated as σ = F/A, where A is the cross-sectional area
of the simulation cell in the xy-plane. This discrete time series
displayed a distorted, time-lagged waveform which was then
characterized according to a Fourier series

∑σ τ γ ω γ τ γ ω ωτ

τ γ ω ωτ

= ′
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The viscoelastic properties of materials are typically reported in
terms of the primary harmonic of this Fourier series. These
values describe the leading order behavior and are attributed to
a linear stress response. We follow convention and refer to the
primary harmonic (G1′ and G1″) as the storage and loss moduli,
denoted as G′ and G″, respectively. Equation 3 can be rewritten
in terms of the harmonic intensity σn and phase angle δn

∑σ τ γ ω σ τ γ ω ωτ δ τ γ ω= +n( , , ) ( , , ) sin[ ( , , )]
n

n n0 0 0

(4)

The frequency dependence of the relative intensities σ(ω)/σ1
of the harmonic contributions (Figure 1c) is shown to be
primarily odd, with the magnitude decreasing with increasing
harmonic number. The stress response of viscoelastic materials
is typically independent of the direction of applied shear.19 This
symmetry leads to the dominance of odd harmonics.
The moduli were determined at each period of oscillation.

We report these values as an average over multiple periods,
taken after transient effects such as time-dependent moduli
have subsided. Figure 2 shows the strain amplitude dependence
of the moduli for several frequencies of oscillation. Error bars
indicate the standard deviation. In the low amplitude range the
moduli are observed to be independent of strain amplitude.
This corresponds to a linear stress response which is primarily

elastic (G′ > G″) at the lowest frequency (a), crossing over to
viscous at larger frequencies (b−d). The system exhibits a stress
thinning behavior with increased amplitude. Both G′ and G″
decrease, with the storage modulus dropping off faster than the
loss modulus. A weak stress overshoot is observed as a local
maximum in the loss moduli at medium amplitudes. The
transition to amplitude dependent moduli is a hallmark sign of
a nonlinear material response. This behavior is accompanied by
the onset of a distorted stress waveform and, as a result, the
development of higher order harmonics within the moduli. A
measure of the nonlinear contributions in terms of the Fourier
series is the intensity of the third harmonic relative to the first
σ3/σ1 (not shown here). Although our system exhibits the
characteristic indicators of nonlinearities, we find that it only
has small nonlinear contributions from this measure. Over the
range of amplitudes and frequencies reported, σ3/σ1 reaches a
maximum value of 0.15.
The frequency dependence of the moduli within exper-

imental telechelic systems are known to be well-described by a
single Maxwellian model.20 At low frequencies the moduli are
within a viscous regime, where G′ < G″. This viscous behavior
typically exhibits a frequency dependence which scales as G′ ∝
ω2 and G″ ∝ ω. With increased frequency the moduli tend
toward G′ = G″ identifying a crossover from the viscous regime
to the elastic plateau regime (G′ > G″) at even higher
frequencies. The crossover marks a structural relaxation time
scale τs = 1/ωc transitioning from dissipative flow at long time
scales to elastic response at shorter scales.
Figure 3 shows log−log plots of the frequency dependence of

the moduli at constant strain amplitudes. At the smallest
amplitude (a), the system is in the linear regime. The elastic
plateau regime is observed at lowest frequencies reported. We
do not observe the linear viscous response within our
experiments. The predominant elastic response at these
frequencies is explained in that the system lacks sufficient

Figure 1. Time series of (a) the input normalized strain γ(τ)/γ0 and
(b) the normalized stress σ(τ)/σmax response waveform. The stress
response data have been averaged over multiple periods of oscillation.
(c) Frequency dependence of the relative intensities σ(ω)/σ1 of the
harmonic contributions, where ω1 is the input strain frequency and σ1
is the magnitude of the first harmonic.

Figure 2. Strain amplitude dependence of the storage and loss moduli
for several angular frequencies of oscillation: (a) 5.03 × 10−4 rad/τ,
(b) 6.28 × 10−3 rad/τ, (c) 1.26 × 10−2 rad/τ, (d) 2.51 × 10−2 rad/τ.
Data are reported as average values over multiple periods of oscillation.
Error bars report the standard deviation in this data. Lines are shown
as guides to the eye.
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time to rearrange the network structure. Energy is mainly
stored elastically in the stretching of bridging polymer chains.
We have verified that the end-to-end distance of chains indeed
reaches a maximum at the extrema of the oscillatory strain
period within this elastic regime.
In our earlier work,12 a relaxation time for the system was

obtained from diffusion at rest measurements using a Vogel−
Fulcher fit. A relaxation time of τ ≈ 104 was determined,
indicating we should expect the crossover ωc to occur around ω
= 2πf ≈ 10−4. However, we do not observe it within our data.
We noted in the previous work that other fits to relaxation data
can be used instead of Vogel−Fulcher, which give longer
relaxation times for this data. Our rheological results are
validated in that the expected crossover of the moduli would fall
at a frequency lower than 10−4 and would not necessarily be
observed within the data presented here. It is extremely difficult
to investigate even lower frequencies (ω ≤ 10−5) within MD
bulk rheology, simply due to the computational time. Several
periods of oscillation are typically desired to obtain statistically
accurate results. It is not practical to obtain these results in a
reasonable quantity of time.
The moduli tend toward G′ = G″ at high frequencies, where

a near ω1/2 dependence in G″ is observed for all amplitudes.
This behavior is predicted by Rouse-type dynamics21 and can
be attributed to frictional dissipation of Brownian particles.
With increasing amplitude, the low frequency response tends to
become dissipative (Figure 3c,d). A maximum in G′ is observed
in the largest amplitude data. Since elastic behavior is
dependent upon the existence of bridging chains, a decrease
in the elastic response suggests a decrease in network
connectivity. This trending behavior can be attributed to the
fact that these larger amplitudes cannot be reached without
physically pulling the network apart. Large amplitudes and high
frequencies do not allow for sufficient time for the system to
relax and therefore self-assemble. This results in a decrease in
the number of elastically active chains and as a consequence a

decrease in G′. Snapshots of the simulation cell (not shown)
provided evidence of this connectivity loss with a type of
fracture being exhibited at the highest frequencies.

Strain Rate−Frequency Superposition. The rheological
results presented earlier are typical of soft materials. We adopt
the method employed by Wyss et al.22 on other soft materials
to investigate further modes of relaxation. The approach is to
explore the frequency and amplitude parameters simultane-
ously, while maintaining constant strain rate amplitude γ ̇ = γ0ω.
The moduli are determined through bulk rheology over a range
of frequencies for one γ.̇ At each given frequency, the amplitude
is determined so as to hold γ ̇ constant. As a result, low
frequency data correspond to large amplitudes and high
frequencies to small amplitudes. The procedure is performed
for multiple strain rates. If similar dynamics and relaxation
processes exist throughout the oscillatory period for each strain
rate, then there will be an observed consistency in the overall
behavior of the moduli. Consequently, an appropriate choice of
scaling factors should result in a collapse of the moduli data
onto a single master curve. The procedure is referred to as
“strain rate−frequency superposition” (SRFS). Wyss et al.
showed that a scaling of the moduli in the frequency domain
resulted in a data collapse for a wide variety of soft materials
including a hydrogel suspension, a PMMA hard-sphere colloid,
foam, and an oil emulsion.
We start by looking at the unscaled rheological response of

the simulated system shown in Figure 4 for several strain rates.

The increased amplitude in the low frequency range forces the
crossover to higher frequencies with increased shear rate. A low
frequency viscous regime is now visible as a nonlinear response.
The elastic plateau regime becomes shorter in length of
frequency range with increased strain rate. At the highest shear
rate an elastic region can no longer be observed.
Figure 5 shows the scaled moduli G′/α and G″/α as a

function of scaled frequency ω/β. The inset shows the
magnitude of these scaling factors α and β for multiple strain
rates. The storage moduli scale well over the entire frequency
range, whereas the loss moduli only scale in the lower
frequency regime. Variations in the frequency length of the
elastic plateau regime gives rise to the region where the loss
moduli do not scale well. A frequency dependence of G′ ∝ ω1.86

and G″ ∝ ω0.91 is observed. It is important to note that the low

Figure 3. Frequency dependence of the storage (filled symbols) and
loss moduli (open symbols) for several strain amplitudes: (a) 0.108,
(b) 0.359, (c) 0.898, and (d) 1.616. Data are reported as average
values over multiple periods of oscillation. Error bars report the
standard deviation in this data. Lines are shown as guides to the eye.

Figure 4. Storage (filled symbols) and loss moduli (open symbols) for
the simulated system, obtained by maintaining a constant strain rate
throughout the frequency sweep. Data are shown for several strain
rates. Each data set is shifted in the vertical direction by a constant
multiple for clarity. The ordinate scale is reported for data at γ ̇ = 4.51
× 10−5, and a value of −2 is indicated for each respective data set.
Lines are shown for guides to the eye.
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frequency regime corresponds to the largest amplitudes within
SRFS. We have already shown that large amplitudes result in an
increase in nonlinear behavior. Therefore, the viscous regime
has the largest nonlinearities. The exponents of the frequency
dependence maintain a ratio of nearly 2:1, although their
magnitudes are not 2 and 1, as would be expected in the linear
regime. The dashed line marks a scaled crossover frequency ωc/
β, determined from a fit of a single relaxation Maxwell model
(solid lines) in the low frequency range. The crossover
frequency was determined to be ωc/β = 6.3 × 10−5, resulting
in a structural relaxation time of τs = 1.6 × 104. We note that
the value of τs is dependent upon the choice of γ ̇ wherein the
scaling factor β = 1. Therefore, correlations between τs and
earlier reported relaxation times12 cannot be made.
Wyss et al. showed, in their data, that the failure of scaling in

the loss moduli at large ω was due to an additional Rouse
contribution. By removing this contribution such that G″ =
G″(ω) − cω1/2, solely the local maximum near the crossover
frequency remained and the data collapse nicely. Figure S1 of

the Supporting Information shows that we can obtain a similar
result for our data. This indicates that the structural relaxation
contributions to the loss moduli are consistent for the strain
rates and frequencies explored herein.

Nonlinearities. One method to investigate the nonlinear
contributions to the stress response waveform is in the overall
magnitude of σ3/σ1. A second method, which supplies
substantially more information, is a plot of σ(γ), obtained
from σ(τ) and γ(τ). These plots are commonly referred to as
Lissajous trajectory curves. They provide insight into the phase
difference between the stress response and the strain along with
the linearity of the response waveform. The phase of the first
harmonic δ1 (eq 4) provides the general shape of the trajectory
and identifies viscous or elastic type behavior of the system. An
oval trajectory is observed in the viscous regime, where the
stress is out of phase with the applied strain (δ1 = π/2).
Viscoelastic responses have phase angles ranging from 0 ≤ δ1 ≤
π/2 and have elliptical trajectories. A purely elastic stress
response is in phase with the strain (δ1 = 0) and is observed as
straight line trajectory. Nonlinear contributions are associated
with the onset of increased amplitude of higher order
harmonics within the response. These contributions can be
observed as a deviation from a perfectly sinusoidal stress
waveform and, as a consequence, a deviation from the three
trajectories mentioned above. Figure 6 shows Lissajous
trajectory curves for the simulated system, organized in a
space of increasing strain rate and angular frequency. Each
trajectory reports normalized stress σ(τ)/σmax versus normal-
ized strain γ(τ)/γmax shown in black. These trajectories are
averaged over multiple periods of oscillation. The dashed blue
trajectory is the linear contribution to the stress response and is
determined from the inverse Fourier transform of the primary
harmonic of the stress response. Variations between the two
trajectories are nonlinear contributions to the response, arising
from the third and higher harmonic contributions. The
background color to each pane indicates the magnitude of
the σ3/σ1 measure of nonlinearity. The number in the center of

Figure 5. Frequency dependence of the storage and loss moduli,
scaled to overlay the data from several constant strain rates γ.̇ Data are
reported as average values over multiple periods of oscillation. Error
bars report the standard deviation in this data. Inset shows the
magnitude of the scaling parameters α and β as a function of strain
rate.

Figure 6. Lissajous trajectory curves organized in a space of strain rate and angular frequency. Each trajectory, shown in black, reports the normalized
average stress as a function of normalized strain. The linear response, overlaid as a dashed blue line, is constructed from the first harmonic of the
stress response. Numbering indicates the strain amplitude for the given strain rate−frequency combination. Coloring of each pane reports the
intensity of the third harmonic over the first σ3/σ1, a measure of the nonlinearity of the stress response.
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each pane indicates the strain amplitude for the given angular
frequency and strain rate combination.
Recently, Hyun et al.19 showed that the shape of the

nonlinear contributions to the waveform can be described
through the relative phase of the third harmonic δ3′ to the first,
such that δ3′ = δ3 − 3δ1. Applying a shift in time τ = τ′ − δ1′/ω
and expanding eq 4 to n = 3, we find

σ τ σ ωτ σ ωτ δ′ = ′ + ′ + ′( ) sin( ) sin(3 )1 3 3 (5)

The authors explored the corresponding waveform over a range
0 ≤ δ3′ ≤ 3π/2 in the viscoelastic regime (δ1 = π/4). The
Lissajous trajectories within our data (Figure 6) at γ ̇ = 4.51 ×
10−3 show evidence of the majority of this δ3′ range. A phase
angle of δ3′ = 3π/4 produces a stress waveform with a “forward
tilted shoulder”. That is to say, the stress overshoots, early in
time, relative to a sinusoid with the same phase. An example of
this waveform can be observed in Figure 1b, and the resultant
trajectory is shown at a frequency ω = 1.26 × 10−3. A triangular
waveform occurs at a phase angle δ3′ = π/2. A representative
trajectory is observed at ω = 5.03 × 10−3. A “backward tilted
shoulder” is the outcome of δ3′ = π/4. Here, the stress
overshoots, late in time, relative to the same phase sinusoid.
This shape trajectory is observed at ω = 1.57 × 10−2. As δ3′
tends toward zero, the corresponding waveform transitions to
rectangular. Our data do not explore this waveform.
The largest nonlinear contributions occur within trajectories

that are consistent with the δ3′ = 3π/4 and δ3′ = π/4 waveforms.
The δ3′ = 3π/4 trajectory is a viscous response. This increase in
nonlinearity is expected due to the larger amplitude of
oscillation. Interestingly, as frequency increases, the four
highest strain rates exhibit a local minimum and subsequent
maximum in nonlinearity, before reaching the highest
frequencies. This maximum is associated with the δ3′ = π/4
trajectory and occurs near the unscaled crossover frequency.
Nearly linear viscoelastic trajectories are observed within the
highest frequencies of the Lissajous space.

■ STRUCTURAL PROPERTIES
A characterization of structural features within the polymer
network is focused around aggregates and the connecting
chains, bridging between these aggregates (Figure 7).
Aggregates are identified by their size, the number of connected
end groups. The presence of FENE bonds is used to identify
which end groups belong to a given aggregate. The simulation
allows for each end group to be reversibly bonded with multiple

other end groups. Hence, the end groups contained within a
single aggregate will have a connected path of FENE bonds,
physically joining them together. The end groups of a polymer
chain can be contained either within a single aggregate or
within two different aggregates. These two types of chains are
referred to as a loop or a bridge, respectively. One or multiple
bridges that connect the same two aggregates form links. The
weight of a link is the number of chains it contains. Hence, the
number of bridging chains equals the number of links
multiplied by their average weight.
Figure 8 shows the frequency dependence of the number of

aggregates and the loop to bridge ratio. Data are reported as

time averages of the given feature, starting from a time where
initial transient effects have subsided. The data have been
normalized by the quantity of the same structural feature found
within a nonsheared system. Data greater than a value of one
indicate an increase in the given feature due to the application
of oscillatory strain. Data for the total number of aggregates,
shown in Figure 8a, indicate a clear trend. Moreover, they
appear to scale with the same factor β that collapses the moduli.
The scaled crossover frequency ωc/β is shown as a vertical
dashed line. Below the crossover frequency the number of
aggregates increases when the frequency decreases. This is
expected in that low frequencies correspond to larger
amplitudes, which cannot physically be reached without a
significant restructuring of the polymer network. Aggregates are
being pulled apart, and this results in more smaller sized
aggregates. To further explore this restructuring, we obtained
the aggregate size distribution (Figure 9). Only data for γ ̇ =
4.51 × 10−4 are shown for clarity. However, as we show in the
Supporting Information the size distribution is dictated by the
value of ω/β (Figure S2), just like the average size of the
aggregates. From Figure 9 we conclude that under low
frequency oscillatory shear the peak of the distribution moves
to smaller sizes and the number of small aggregates (of
approximately sizes 5−15) increases. This is consistent with the
notion that the shear ruptures the aggregates. Note that the size
distribution near the crossover frequency (ω/β = 5.91 × 10−5)
is still different from the unsheared one. The number of
aggregates is larger as well. Only at frequencies higher than

Figure 7. Cartoon of the structural elements found within a polymer
network. Chain beads are not shown within the figure for clarity.
Aggregates are collections of polymer chain end groups (shown as red
beads). Loops are chains with both end groups within the same
aggregate. Bridges have their end groups in two different aggregates.
More than one chain can connect the same two aggregates. We call
this type of connection a link, while the number of chains is referred to
as its weight. Dangling chains have only one end group with a
connection. Note that all simulations are performed in three
dimensions.

Figure 8. Frequency dependence of structural content within the
polymer network. The top pane shows the number of aggregates, while
the lower pane indicates the loop to bridge ratio. Data are reported for
several strain rates as time averaged values. Error bars report the
standard deviation in the data. Data have been normalized by the
quantity of structural features found within a nonsheared system.
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approximately ω/β = 1.48 × 10−4 the peak value of the
distribution resembles the unsheared one. Even thought the
distribution at ω/β = 5.91 × 10−3 resembles the unsheared one,
it is shifted to higher aggregate sizes. This is in agreement with
Figure 8a, which shows that the number of aggregates decreases
for oscillatory shear at the highest frequencies. At these
frequencies the number of single sized aggregates is lower as
well. This implies that the free end groups of dangling chains
(Figure 7) connect to existing aggregates, thereby increasing
the aggregate size. The chain beads, which surrounding every
aggregate, serve as a barrier between the given aggregate and
others. These beads encompass the aggregate, acting as a
corona. Traversing the aggregate corona is one challenge for
these free end groups. The increase in number of chains with
increased aggregate size makes it difficult for two aggregates to
spatially find one another. Small oscillations seem to provide a
mechanism for the free end groups to pass through these
corona chain beads. This leads to an association with existing
aggregates and a decrease in the number of free end groups.
Shear-induced aggregation has been reported on before.23,24

Figure 8b shows the loop to bridge ratio. Although more
noisy, the data still show a clear trend. At the highest
frequencies the ratio resembles that of the unsheared system.
However, when the amplitude increases (frequency decreases),
deviations are observed. Interestingly, the ratio peaks near the
crossover frequency. This increase in the number of loops is
expected since a system containing more loops is easier to
shear. An increase in the loop to bridge ratio as a result of
uniform shear has been anticipated and discussed previously.26

The decrease in the ratio at even lower frequencies and larger
amplitudes is surprising. We have been able to attribute this to
an increase in link weight. Figure 10 shows the probability of
finding a link of a specific weight for a few amplitude−
frequency combinations. Compared to that of a nonsheared
system the weights of the links are larger. This implies that
when the system restructures so as to allow large amplitude
shear, it not only forms more loops, but in addition, bridging
chains that previously joined different aggregates join the same
pair instead. The latter effect seems to dominate at the lowest
frequencies. As the weight of links increase, this lowers the total
number of links within the network. From Figure 8a, it is
evident that there are more aggregates. Hence, each aggregate
links to fewer others. This will make it easier for the network to
deform. However, the connections that exist are on average
stronger than those in the unsheared system. After all, to pull

two aggregates apart which are bridged by a single weight link, a
single end group would need to be freed from only one of the
two aggregates. When they are bridged by multiple chains,
many end groups have to be freed simultaneously. A similar
transition to higher weight links was reported in a recent paper
by Billen et al.25 There it was shown under uniform shear that
higher weight links tend to orient themselves parallel to the
direction of shear, while the links of weight one orient
perpendicular. This seems to provide a mechanism for the
system to lower stresses during shearing. Only a few links
containing one bridging chain have to be broken during the
large amplitude oscillatory motion.

■ CONCLUSIONS
We utilize a molecular dynamics simulation to perform bulk
rheology experiments, exploring the structural variations in a
polymer network that result as a viscoelastic response. The
simulation is novel in that the associative properties of the
functionalized polymer end groups are modeled as reversible
physical connections. This approach allows for a unique
identification of which end groups are contained within a
single aggregate.
The rheological properties of the simulated system are found

to be consistent with experimental associative polymers. The
methodology behind SRFS is used to explore the crossover
between the low frequency viscous to elastic plateau regime.
The network structure is shown to undergo variations
throughout the viscoelastic range. A comparison with the
topology of a nonsheared system gives rise to the interesting
frequency dependence of these structural features. At high
frequencies, small amplitude oscillations more or less preserve
the network topology, although a small decrease in single-size
aggregates is observed. The rapid oscillatory shear makes it
possible for the singles to join existing large aggregates, making
them even slightly larger. In contrast, significant topological
restructuring occurs in the lower frequencies, with the onset
occurring at frequencies slightly higher than the crossover. This
process starts with an increase in the number of loops and a
decrease in the average size of the aggregates. However, at the
lowest frequencies the loop to bridge ratio decreases again.
Even though more chains form bridges, the network structure is
weakly connected with only a few links from each aggregate
extending to others. Many of these links contain multiple
chains, and we believe them to exist over long periods. Such a
configuration provides a mechanism for the system to keep the
need to restructure during high amplitude oscillatory shear at a

Figure 9. Probability of finding an aggregate of a given size. Data are
shown for a few frequencies at shear rate of 4.51 × 10−4.

Figure 10. Probability of finding a link of a specific weight within the
polymer network. Data are shown for a few amplitude and frequency
combinations at a shear rate of γ ̇ = 4.51 × 10−4.

Macromolecules Article

DOI: 10.1021/acs.macromol.5b00885
Macromolecules 2015, 48, 6313−6320

6319

http://dx.doi.org/10.1021/acs.macromol.5b00885


minimum. To confirm this picture, we plan to perform further
studies on aggregate kinetics.
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