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Abstract –We investigate how the network topology of an ensemble of telechelic polymers changes
with temperature. The telechelic polymers serve as “links” between “nodes”, which consist of
aggregates of their associating end groups. Our analysis shows that the degree distribution of
the system is bimodal and consists of two Poissonian distributions with different average degrees.
The number of nodes in each of them as well as the distribution of links depend on temperature.
By comparing the eigenvalue spectra of the simulated gel networks with those of reconstructed
networks, the most likely topology at each temperature is determined. Topological changes occur
at the transition temperatures reported in our previous study (Baljon A. R. C. et al., J. Chem.
Phys., 126 (2007) 044907). Below the micelle transition the topology can be described by a robust
bimodal network in which superpeer nodes are linked among themselves and all peer nodes are
linked only to superpeers. At even lower temperatures the peers completely disappear leaving a
structure of interconnected superpeers.

Copyright c© EPLA, 2009

Reversible polymeric gels contain networks of physically
associating polymers. These are copolymers incorporating
soluble fragments along with a small fraction of insoluble
chemical groups or linkers, which strongly attract each
other. Different chemical units may be used as linkers
depending on the solvent, e.g., hydrophobic fragments on
water-soluble polymers in aqueous solutions, and ionic
groups on ionomers in organic solvents. The linkers form
stable aggregates, which serve as temporary junctions in
the resulting network structure [1,2]. Associating polymers
show interesting rheological behavior, e.g. shear thickening
followed by shear thinning in steady shear flow. Moreover,
a transition from a fluid “sol” state to a glassy “gel”
state is obtained by increasing the polymer concentration
or decreasing the temperature. Transitions can also be
triggered by applying a shear stress. It has been argued
that the slowdown in the dynamics of the system when
approaching the gel transition is not exclusively due to
the longer lifetime of the aggregates. Structural changes
in the network are believed to be a factor too [3,4]. They
occur at the micelle transition temperature. In a previous
work [5] we argued that the micelle transition resembles

(a)E-mail: abaljon@mail.sdsu.edu

the jamming transition [6,7] in amorphous and glassy
systems [8]. Below this transition temperature, the stress
relaxation time strongly increases. Moreover, the system
shows solid-like behavior when sheared and develops a
yield stress. In this study, we obtain further insight into the
self-organized jammed states below the micelle transition
temperature.
To this end, we use graph theory to quantify the

topology of a simulated gel network (SGN). Details of the
simulations can be found in [5]. We will show that the
topology changes as a function of temperature and point
out differences above and below the micelle transition.
All simulations are carried out on a system of 1000
telechelic polymer chains. Each chain contained 8 beads.
Both end groups are linkers. Non-bonded interactions
between the beads are modeled using a purely repulsive
Lennard-Jones (LJ) potential. All quantities are expressed
in terms of the parameters (σ, ε, τ) of this potential.
Beads connected by the chain structure interact through a
FENE potential. Beads at chain ends can form junctions.
They are modeled by a FENE potential with the same
parameters. The positions of the beads are updated in
molecular-dynamics simulations using the aforementioned
force-fields. Attempts to create and destroy junctions
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are Monte Carlo moves [9]. The probability of success
depends on exp (−∆U/kT ), where ∆U is the difference
in energy between the old and new state. It equals the
potential energy of a junction and hence is the sum of
the FENE potential and a negative constant Uassoc =−22
that models a dissociation barrier. The temperature is
controlled by coupling the simulation cell to a heat bath.
At each temperature the system is equilibrated for at least
5000 τ before structural properties are sampled. Data at
the lower temperatures are all obtained starting from a
well equilibrated configuration at T = 1.5. The system is
then slowly cooled at a rate of 2.500 τ per ∆T =−0.1, in
order to obtain the desired temperatures. Data obtained
by cooling the system from different initial states at T =
1.5 are identical within statistical fluctuations. Moreover,
the statistical averages of structural properties do not
change appreciably over time, even though the system
shows rich dynamics with individual aggregates dissolving
and new ones forming. Aggregates of end groups form
and their sizes increase as temperature decreases. At low
temperatures the system undergoes a gel transition: due to
the aggregates an extended network forms that prohibits
flow. Since the density is approximately 30%, a glass
transition, typically displayed in higher-density systems,
is not observed.
Our previous study [5] has defined four characteristic

temperatures for the gel transition. At low temperature
the relaxation time as a function of temperature diverges
either as a stretched exponential at T0 = 0.29 or as a
power-law at Tc = 0.4. Above TA = 0.75 the dependence
of relaxation time on temperature becomes of Arrhenius
type. At the micelle transition temperature Tm = 0.51 the
number of reversible bonds strongly increases and the
specific heat peaks. Below Tm the overall structure of
the reversible network changes and a peak in the micelle
size distribution becomes visible [5,10]. Between Tm and
T0 collective modes of relaxation are still available to
the system and cause a net flow over long time periods.
In this letter we investigate the structure of the SGN
and how it changes with temperature. To this end, we
compare it with that of complex networks found elsewhere
in nature [11]. A complex network can be described as a set
of nodes with links in between. In the well-known Erdös-
Rényi (ER) random network [11], every pair of nodes is
linked with a probability p. The degree distribution of this
network, which describes the number of links k per node,
is Poissonian:

P (k) =
〈k〉
k
e−〈k〉

k!
. (1)

The average degree 〈k〉=Np= 2l
N
, where l equals the

number of links and N is the number of nodes. In order
to compare the simulated gels to other complex networks,
we call an aggregate of end-groups a node. A polymer
chain is identified as a link (unless both ends belong to
the same aggregate). In a recent paper by Wang et al. [12]

Fig. 1: (Color online) A 2D schematic illustrating the definition
of nodes (black circles) and links (black lines) for a hypothetical
bead-spring configuration. The beads at both chain ends are
red and the others blue. Note that all simulations are performed
in 3D.
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Fig. 2: (Color online) Degree distributions of the networks
obtained from simulations at various temperatures.

a graph for reversible polymers was defined in the same
way. In our simulations it is possible that the ends of
more than one polymer chain connect the same pair of
aggregates. If this is the case, we still count it as one link.
A schematic picture illustrating the definition of a node
and a link is shown in fig. 1. The degree distribution of the
networks is shown in fig. 2. The probability distribution
is bimodal and qualitatively similar to the aggregate
distribution of the model at hand [5] and to that reported
by others [10,13] for simulations of polymers with different
chain lengths and interaction potentials. The goal of this
study is to quantify the distribution and to characterize
the topological changes using graph theory. As shown
in fig. 3 for T = 0.55, a superposition of two Poisson
distributions with different values of 〈k〉 fits the data,

P (k) = nS
〈k〉
k
S e
−〈k〉

S

k!
+nP

〈k〉
k
P e
−〈k〉

P

k!
. (2)

Such a bimodal degree distribution is characteristic of
complex networks which contain two types of nodes. Nodes

68003-p2



Topological changes at the gel transition of a reversible polymeric network

5 10 15 20

Degree

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
ab

il
it

y

Fig. 3: Degree distribution for T = 0.55 (circles). The dotted
line shows a fit to eq. (2) using the values in table 1. The
asterisks result from a reconstruction of the gel network as
described in the text.

in the distribution with the higher 〈k〉 value 〈k〉S are called
“superpeers” (S), those in the other distribution “peers”
(P) [14]. nS and nP are the fractions of superpeer and peer
nodes, respectively. Within the simulations links break and
new ones form all the time. In such a dynamic network,
nodes alternate between being part of the superpeer and
peer distribution.
Table 1 list the values of nS , nP , 〈k〉S , and 〈k〉P of the

fits to the SGN for a range of temperatures. With decreas-
ing temperature nS increases. Below T = 0.4 nP = 0
and a single distribution of superpeers remains. The
correlation coefficient (CC) of the fit is excellent at high
temperatures, but becomes less accurate at temperatures
below T = 0.5. We found that the single distribution below
T = 0.4 has a slightly higher variance than predicted by
a Poissonian model. Nevertheless, the data indicates that
the SGN can be described by two Poissonians, whose
relative contributions depend on temperature. This is
shown in fig. 4, where the fraction of superpeer nodes
nS is plotted. The inset shows its rate of change. This
rate peaks at the micelle transition (T = 0.5). At this
temperature there is a strong increase in the average
aggregate size. Moreover, the data in fig. 4 suggest
that there is a qualitative change in the shape of their
degree distribution and in the topology of the network
structure.
To obtain further insight into these topological changes

of the SGN with temperature, related networks (RN) were
constructed according to the following recipe. At each
temperature, we assign random coordinates in a 3D unit
cell to N nodes maintaining the nS/nP ratio from table 1.
Next, links are added in such a way that the desired values
of 〈k〉S and 〈k〉P are obtained. To this end, the number of
links between superpeers lSS , the number of links between
peers lPP , and the number of links between a peer and a
superpeer lPS are chosen such that

〈k〉S = (2lSS + lPS)/nS ,

〈k〉P = (lPS +2lPP )/nP .
(3)

Table 1: Results of fits of degree distributions to eq. (2).

T nS nP 〈k〉S 〈k〉P CC

5.0 0.063 0.937 1.512 0.420 1.000

3.0 0.100 0.900 1.915 0.533 1.000

2.2 0.124 0.876 2.238 0.621 1.000

1.8 0.137 0.863 2.551 0.716 1.000

1.5 0.165 0.835 2.731 0.735 1.000

1.2 0.193 0.807 3.264 0.890 1.000

1.0 0.226 0.774 3.867 1.045 1.000

0.8 0.303 0.697 4.784 1.266 1.000

0.7 0.380 0.620 5.544 1.402 0.999

0.6 0.525 0.475 6.552 1.387 1.000

0.55 0.604 0.396 7.131 0.997 1.000

0.5 0.777 0.223 7.765 0.830 0.991

0.45 0.991 0.009 8.356 0.984 0.976

0.4 1.0 0.0 8.620 0.976

0.3 1.0 0.0 8.720 0.960
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Fig. 4: Fraction of superpeers as a function of temperature. The
inset shows the rate of change of the fraction of superpeers.

Initially, all links are chosen randomly. Further modifi-
cations are necessary given that the SGN is a spatial
graph [11], because chain molecules that form the links
have a finite size. They are approximately 7σ long when
fully stretched. Hence we allow only links between nodes
that are shorter than a certain cutoff distance. The number
of each type of link and hence the values of 〈k〉S and
〈k〉P are unchanged. To decide on the value of the cutoff
distance, we calculate clustering coefficients. For a partic-
ular node, the clustering coefficient is defined as the frac-
tion of its neighbors that connect among themselves. The
clustering coefficient of the entire network is obtained by
averaging over all nodes of degree two and up [11]. Spatial
dependence causes the clustering coefficient of a network
to increase. Figure 5 shows the clustering coefficient as
a function of temperature for the SGN (circles). It turns
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Fig. 5: (Color online) The clustering coefficient as a function of
temperature. The circles are for the SGN. After rewiring the
values change to those indicated by the blue triangles. The red
squares are the calculated values from eq. (4).

out that the clustering coefficient of a graph with purely
random links is much smaller than that of the SGN, as
expected. A RN is constructed by adjusting the cutoff
distance so as to match its clustering coefficient to that of
the SGN. At T = 0.55 a cutoff distance of 0.28 is needed.
Given the dimensions of our system this corresponds to
6.6σ. At higher T , the value of the cutoff distance slightly
increases. The degree distributions of the RN are similar
to that of the SGN (shown in fig. 3 for T = 0.55).
This finishes the description of the construction of the

RN. To further explore the relation between the SGN and
random graphs we have investigated what happens to the
clustering coefficient of the SGN when spatial dependence
is removed. This task is achieved through a rewiring
process in which links of restricted length are replaced by
ones with arbitrary length in such a way that the degree
distribution is preserved1. During rewiring, the clustering
coefficient decreases. Its steady state values are shown in
fig. 5 (triangles). Also shown is the theoretical value of the
clustering coefficient [15] of an ER network with average
degree 〈k〉:

C =
〈k〉

N

[

〈

k2
〉

−〈k〉
2

〈k〉
2

]2

, (4)

where N, the total number of nodes, is matched to that
observed in the SGN. As one can see, the clustering
coefficients of the rewired SGN are very close to those
predicted by this equation.
We now further investigate the spatial dependent SGN

using the RN for which the clustering coefficient was
matched by restricting the length of allowed links. The
network topology is quantified in more detail by the
number of links and their distribution (lSS , lPP , and lPS).
There is still one degree of freedom in choosing these
three numbers in such a way that eq. (3) is satisfied.

1Starting with the configuration taken from the SGN, endpoints
of two links are switched according to the following procedure:
i) Randomly select links ℓhi and ℓjk connecting nodes nh, ni and
nj , nk, respectively. ii) Remove links ℓhi and ℓjk, followed by the
creation of new links ℓhj and ℓik if none of these links already exist.
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Fig. 6: A comparison of the spectral density of of the SGN (a)
with RNs (b)–(d). In (b) the networks of peers and superpeers
are disconnected (lPS = 0), (c) is for the case that peers do not
link among themselves (lPP = 0), and (d) shows the RN that
matches the SGN. In this case lSS/ltot = 0.85± 0.01, lPP /ltot =
0.02± 0.01, and lPS/ltot = 0.13± 0.01.

Hence another property is needed to decide which link
distributions best mimic the simulated gel networks.
To this end, we calculate the spectral density ρ(λ) of
the adjacency matrix of a specific configuration of the
SGN [16]:

ρ(λ) =
1

N

N
∑

j=1

δ (λ−λj), (5)

where the λj are the eigenvalues of the adjacency matrix.
The results are averaged over 100 independent configu-
rations of the SGN. The result is shown for T = 0.55 in
fig. 6(a). The spectrum of the SGN is then compared
with that of RNs for a range of choices for the number
of links, chosen such that eq. (3) is satisfied. As seen in
fig. 6, when lPS = 0 and hence lPP is maximum (b), the
spectrum possesses many peaks. This is due to an abun-
dance of disconnected clusters (groups of nodes linked
together). The spectrum of a network in which lPP = 0
and hence all peers are only connected to superpeers (c)
is the smoothest. In all cases the spectrum is asym-
metric. As we reported elsewhere [17], this is due to the
spatial dependence of the network. Without spatial depen-
dence, ER networks are symmetric in the limit N →∞.
We use the height of the peak at λ=−1 as a criterion
to determine the value of lPP for which the RN spec-
trum best matches that of the SGN. As we show else-
where [17], the height of this peak depends on the number
of triangles. A triangle is a structure in which three
links connect three nodes. An increase in lPP leads to an
increase in the number of triangles and hence in the peak
height at λ=−1. The best match is shown in fig. 6(d).
In this case lSS/ltot = 0.85± 0.01, lPP /ltot = 0.02± 0.01,
and lPS/ltot = 0.13± 0.01. Here ltot = lSS + lPP + lPS . We
found that the fractions of the “giant network compo-
nent” [11] in the SGN and RN at these settings are compa-
rable as well.
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Fig. 7: Percentage of each type of link as a function of
temperature. Circles for lSS/ltot, squares for lPP /ltot, and
diamonds for lPS/ltot. Lines are guides for the eye. The
cartoons show the transitions in the peer-superpeer networks.
Superpeers are shown as closed dots and peers as open dots.

A similar comparison is performed for all temperatures.
The results are shown in fig. 7. Sketches of the peer-
superpeer network are displayed as well. At the highest
temperatures the system consists of two separate networks
(D). If the temperature is lowered, links between peers and
superpeers are formed (C). Gradually the number of peers
and the number of links in between them decrease. At T =
0.5 the number of links between peers vanishes and every
peer is linked to a superpeer (B). Finally, below T = 0.4
only superpeers and links between them remain (A).
We conclude that during the transition from a fluid to a

gel state the SGN undergoes several topological changes.
These were studied by means of graph theory, considering
aggregates as nodes and polymer chains as links. Construc-
tion of representative bimodal graphs (RN) has allowed
us to investigate their topology in detail. Spatial effects
were accounted for by restricting the size of links in such
a way that the clustering coefficient of the RNs matches
that of the SGNs. By comparing spectral densities, we
were able to determine the number of links between peers
and between superpeers, as well as those connecting peers
to superpeers. We detected that significant changes in the
topology occur at temperatures we have previously charac-
terized [5] as transition temperatures. Most importantly,
below the micelle transition temperature Tm = 0.5 links
between the peers disappear. The resulting topology has
been widely studied in the literature [18] and was shown
to be extremely robust. Moreover, below Tc = 0.4 the peer
nodes themselves disappear and a single degree distrib-
ution remains. Given that the topological changes occur
at the same temperatures as the rheological transitions

observed in previous work [5], we believe that these effects
could be intimately related. At low temperatures, flow
can only occur when aggregates break into smaller parts.
Depending on the network topology, simultaneous breakup
of several aggregates might be necessary. Currently, we
investigate the rates at which aggregates form and disap-
pear and how these rates depend on aggregate size and
system temperature. Knowledge of these rates will allow
us to construct master equations for the evolution of the
superpeer and peer populations.
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