An Analysis of Mathematical Content Knowledge for Teaching*

<table>
<thead>
<tr>
<th>Participant group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospective Teachers (PSTs)</td>
<td>Undergraduates enrolled in a first mathematics content course for elementary school teachers</td>
</tr>
<tr>
<td>Experienced Practicing Teachers</td>
<td></td>
</tr>
<tr>
<td>Initial Participant Teachers (IPs)</td>
<td>Experienced K–3 teachers who were about to begin sustained professional development focused on children’s mathematical thinking</td>
</tr>
<tr>
<td>(n = 31)</td>
<td></td>
</tr>
<tr>
<td>Advancing Participant Teachers (APs)</td>
<td>Experienced K–3 teachers who had engaged with sustained professional development focused on children’s mathematical thinking for 2 years</td>
</tr>
<tr>
<td>(n = 31)</td>
<td></td>
</tr>
<tr>
<td>Emerging Teacher Leaders (ETLs)</td>
<td>Experienced K–3 teachers who had engaged with sustained professional development focused on children’s mathematical thinking for at least 4 years and were beginning to engage in at least minimal activities to support other teachers</td>
</tr>
<tr>
<td>(n = 32)</td>
<td></td>
</tr>
<tr>
<td>Strong Mathematics Students (SMSs)</td>
<td>STEM students, with no teaching intentions, enrolled in upper–division mathematics courses</td>
</tr>
<tr>
<td>(n = 32)</td>
<td></td>
</tr>
</tbody>
</table>

Note. All practicing teachers had at least 4 years of teaching experience (with a range of 4–33 years), and the number of years of teaching experience in each group averaged 14–16 years.
* Funded by the National Science Foundation, ESI-0455785 and DRL-0918780. The opinions expressed in this presentation do not necessarily reflect the position, policy, or endorsement of the supporting agency.
<table>
<thead>
<tr>
<th>Group</th>
<th>Andrew</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Your prediction

<table>
<thead>
<tr>
<th>Group</th>
<th>Andrew</th>
<th>Ones</th>
<th>STEP Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STEP Content Tasks

<table>
<thead>
<tr>
<th>Ones Task</th>
<th>Andrew Task</th>
</tr>
</thead>
</table>
| Below is the work of Terry, a second grader, who solved this addition problem and this subtraction problem in May.
Problem A
\[
\begin{align*}
259 + 38 &= \quad 297 \\
31429 - 34 &= \quad 395
\end{align*}
\]
- Does the 1 in each of these problems represent the same amount? Please explain your answer.
- Explain why in addition (as in Problem A) the 1 is added to the 5, but in subtraction (as in problem B) 10 is added to the 2.
| In March, Andrew, a second grader, solved \(63 - 25 = \square\) as shown below.
\[
\begin{align*}
63 - 25 &= 38 \\
- 34 &= 395
\end{align*}
\]
- Explain why Andrew’s strategy makes mathematical sense.
- Please solve \(432 - 162 = \square\) by applying Andrew’s reasoning. |

Strategies Task

a) Please provide solution strategies—as many as you can—that you might expect children to use to solve the following problem:

Pablo read 15 pages of his library book on Saturday. The book has 32 pages. How many pages will he have to read on Sunday to finish his book?

b) Circle the strategy or strategies that you would most likely see first graders using.

Division Task

The teacher needs to put 15 flowers in vases. Each vase can hold 5 flowers. How many vases does she need?

Russ, a first grader, solved this problem in February. To solve the problem, he counted out 15 linking cubes. He pulled out a group of 5 cubes and then another group of 5 cubes and then another group of 5 cubes, so all the cubes were gone. Then he counted the number of groups, "1, 2, 3," and said that 3 vases were needed. (Below is his record of his work.)

Please think about the following problems and whether Russ is likely to use similar reasoning when solving them. (Due to space constraints, below we present only the first of three parts. Parts 2 and 3 are similar but use different problem types.)
Part 1 There are 20 children on the playground. The teacher wants to play a game with 4 teams. How many children will be on each team if each team has the same number of children?

- To solve this problem, is Russ likely to use reasoning similar to the reasoning he used to solve the vases problem? Yes No Why or why not?
- If you answered no, describe one strategy a young child would be likely to use to solve this problem.

Pat Task

In May, a teacher provided the following situation in her third-grade class:

I was at a store, and I saw that chocolate kisses come in bags of 42. I wanted to share these kisses among 7 people. How many kisses would each person get?

Following are the steps Pat told his teacher he had performed mentally to solve the problem. The teacher's follow-up questions confirmed that Pat's steps reflected a deep understanding of the problem situation.

\[
\begin{align*}
4 \times 10 &= 40 \\
& \text{That is three 4s too many, so I have 12 left over.} \\
12 + 2 &= 14 \\
14 ÷ 2 &= 7 \\
4 + 2 &= 6. \text{ So } 42 ÷ 7 = 6.
\end{align*}
\]

a) Please explain how each of Pat's steps makes mathematical sense in this context.
b) Use Pat's approach to solve 56 ÷ 8.
Time Task

(This web-based task was administered so that respondents submit the response to Part 1 before responding to Part 2, and they submit the response to Part 2 before responding to Part 3).

Last month the children in a third-grade classroom were given the following problem: You were on a train that left Los Angeles at 2:54 p.m. and arrived in Phoenix at 7:12 p.m. How long were you on the train?

Matt solved the problem as follows:

\[
\begin{array}{c}
6:
\end{array}
\]

Matt explained,
"I couldn't subtract 4 from 2, so I borrowed 10 to make 12; 4 subtracted from 12 is 8. Then I couldn't take the 5 from the 0, so I borrowed 1 from the 7 and put it by the 0. Then I subtracted 5 from 10; that's 5. Then I subtracted 2 from 6, and that's 4. The answer is 4 hours and 58 minutes."

Time Task (Part 1 of 3)
1. What do you think about Matt's solution?

Time Task (Part 2 of 3)
Laverna, one of Matt's classmates, used a different method to solve the same problem that Matt had solved by subtracting. She "counted up" the elapsed time from 2:54 p.m. to 7:12 p.m.
2. If Laverna answered correctly, what was her answer?

Time Task (Part 3 of 3)
3. The class discussed Matt's subtraction solution and LaVerna's counting-up solution. They saw that Matt's answer was 40 minutes too large. Can you explain why Matt's procedure does not make mathematical sense?
4. If Matt uses his same procedure on another travel-time problem that also requires regrouping from the hours, will his answer again be 40 minutes too large?
5. Why or why not?
Jorge revised Matt's subtraction procedure and used it to calculate the elapsed time from 4:55 p.m. to 8:19 p.m. His answer was 3 hours and 24 minutes, the correct answer.

\[
\begin{array}{c}
7 \quad 6 \\
8 \quad 19 \\
-4 \quad 55 \\
\hline \\
3 \quad 24
\end{array}
\]

6. What does the 7 represent in Jorge's revised procedure?
7. What does the 6 represent in Jorge's revised procedure?
8. How many minutes are represented within the oval in Jorge's procedure, shown below?

\[
\begin{array}{c}
7 \quad 6 \\
8 \quad 19 \\
-4 \quad 55 \\
\hline \\
3 \quad 24
\end{array}
\]